ELSEVIER

Synthesis, crystal structure and catalytic activity of some new chiral ansa-metallocenes of yttrium, lanthanum, samarium, lutetium and of zirconium ${ }^{1}$

Herbert Schumann ${ }^{\text {a,* }}$, Kerstin Zietzke ${ }^{\text {a }}$, Roman Weimann ${ }^{\text {a }}$, Jörg Demtschuk ${ }^{\text {a }}$, Walter Kaminsky ${ }^{\text {b }}$, Anne-Meike Schauwienold ${ }^{\text {b }}$
${ }^{\text {a }}$ Institut für Anorganische und Analytische Chemie der Technischen Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
${ }^{\text {b }}$ Institut für Technische und Makromolekulare Chemie, Universität Hamburg, Bundesstraße 45, D-20146 Hamburg, Germany

Received 17 February 1998

Abstract

Chiral silicon bridged yttrio- and lanthanidocene chlorides $\left[\operatorname{MeRSi}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right) \mathrm{LnCl}\right]_{2}(\mathrm{R}=\mathrm{Et}(\mathbf{a}), \mathrm{Ph}(\mathbf{b}) ; \mathrm{Ln}=\mathrm{Y}(\mathbf{4 a}, \mathbf{b}), \mathrm{La}$ $(\mathbf{5 a}, \mathbf{b}), \mathrm{Sm}(\mathbf{6 a}, \mathbf{b}), \mathrm{Lu}(\mathbf{7 a}, \mathbf{b}))$ and zirconocene dichlorides $\left[\mathrm{MeRSi}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right) \mathrm{ZrCl}_{2}\right](\mathrm{R}=\mathrm{Et}(\mathbf{8 a}), \mathrm{Ph}(\mathbf{8 b}))$ were synthesized. Compounds 4-7 react with sodium acetate yielding the corresponding monomeric acetates [$\mathrm{MeRSi}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right) \mathrm{LnO}_{2} \mathrm{CMe}$] $(\mathrm{R}=\mathrm{Et}(\mathbf{a}), \operatorname{Ph}(\mathbf{b}) ; \operatorname{Ln}=\mathrm{Y}(\mathbf{9 a}, \mathbf{b}), \operatorname{La}(\mathbf{1 0 a}, \mathbf{b}), \operatorname{Sm}(\mathbf{1 1 a}, \mathbf{b}), \operatorname{Lu}(\mathbf{1 2 a}, \mathbf{b}))$. All compounds were characterized by elemental analysis, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectroscopy, and by mass spectrometry. Single crystal X-ray structure determinations show a dimer for $\mathbf{6 a}$ and a monomer for $\mathbf{8 a}$. The zirconocenes $\mathbf{8 a} \mathbf{a} \mathbf{b}$ are active catalysts for the polymerization of ethylene and propylene in the presence of methylalumoxane (MAO). © 1999 Elsevier Science S.A. All rights reserved.

Keywords: ansa-Metallocenes; Bridged cyclopentadienyl compounds; Organolanthanide compounds; Polymerizations; Zirconocenes

1. Introduction

Organometallic complexes containing two cyclopentadienyl or two tetramethylcyclopentadienyl ligands bridged by $\mathrm{Me}_{2} \mathrm{Si}$ or $\mathrm{Et}_{2} \mathrm{Si}$ units are known of several transition metals including zirconium [2,3] and of some lanthanide metals [4-11]. Also asymmetric complexes of zirconium [12,13] and of some lanthanides [4,7] containing one unsubstituted cyclopentadienyl and one tetramethylcyclopentadienyl ligand bridged by the $\mathrm{Me}_{2} \mathrm{Si}$ group were already reported. Several symmetrically and asymmetrically substituted dimethylsilylene

[^0]bridged zirconocenes [14] and lanthanidocenes [15] were tested as catalysts for olefin polymerization. The first ansa-cyclopentadienyl compound with two different substituents at the bridging silicon atom, $[\mathrm{Me}(\mathrm{H}) \mathrm{Si}-$ $\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{TiCl}_{2}$], was prepared by Köpf et al. in 1983 [16]. Chirality can be generated in such ansa-silylene complexes if also the two cyclopentadienyl moieties differ from each other. Whereas chiral ansa-metallocenes bridged by CRR^{\prime} units were already synthesized [17], corresponding silylene bridged compounds were unknown up to now.
In this context we were interested in synthesizing and characterizing chiral ansa-lanthanidocenes and zirconocenes with silicon as the chiral center surrounded by two differently substituted cyclopentadienyl ligands and two different alkyl or aryl groups. Furthermore, we wanted to study the influence of the chiral silicon bridge on the catalytic properties of these compounds.

\[

$$
\begin{aligned}
& \mathrm{R}=\mathrm{Et} ; \mathrm{Ln}=\mathrm{Y}(\mathbf{4 a}), \mathrm{La}(\mathbf{5 a}), \operatorname{Sm}(\mathbf{6 a}), \mathrm{Lu}(\mathbf{7 a}) \\
& \mathrm{R}=\mathrm{Ph} ; \mathrm{Ln}=\mathrm{Y}(\mathbf{4 b}), \mathrm{La}(\mathbf{5 b}), \operatorname{Sm}(\mathbf{6 b}), \mathrm{Lu}(\mathbf{7 b})
\end{aligned}
$$
\]

Scheme 1.

2. Synthesis and properties

The way of preparing the ligands $\mathrm{CpCp} * \mathrm{SiRR}^{\prime}$ differs somewhat from the method given in the literature [7]. Dichloroethylmethylsilane or dichloromethylphenylsilane reacted with equimolar amounts of sodium tetramethylcyclopentadienide in THF giving the monotetramethylcyclopentadienyl substituted silanes $\mathbf{1 a}$ or $\mathbf{1 b}$ as pale yellow liquids. Treatment of $\mathbf{1 a}$ or $\mathbf{1 b}$ with sodium cyclopentadienide produced orange or dark yellow colored, oily cylopentadienyl(ethyl)(methyl) (tetramethylcyclopentadienyl)silane (2a) or cyclopenta-dienyl(methyl)(phenyl)(tetramethylcyclopentadienyl)silane ($\mathbf{2 b}$), respectively. The compounds $\mathbf{2 a}$ and $\mathbf{2 b}$ were reacted without further purification with sodium amide yielding the corresponding disodium salts $\mathbf{3 a}$ and $\mathbf{3 b}$. Like the intermediate products $\mathbf{1 a}, \mathbf{b}$ and $\mathbf{2 a}, \mathbf{b}$, the disodium salts are sensitive towards air and moisture. In contrast to $\mathbf{1 a}, \mathbf{b}$ and $\mathbf{2 a}, \mathbf{b}$ which are soluble in common organic solvents, $\mathbf{3 a}, \mathbf{b}$ are only soluble in THF.
$\mathrm{Me}(\mathrm{R}) \mathrm{SiCl}_{2}+\mathrm{Na}\left(\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right)$
$\rightarrow \mathrm{Me}(\mathrm{R}) \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{Cl}+\mathrm{NaCl}$
1a, b
$\mathrm{Me}(\mathrm{R}) \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right) \mathrm{Cl}+\mathrm{Na}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$
$\rightarrow \mathrm{Me}(\mathrm{R}) \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)+\mathrm{NaCl}$
2a, b
$\mathrm{Me}(\mathrm{R}) \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)+2 \mathrm{NaNH}_{2}$
$\rightarrow \mathrm{Na}_{2}\left[\mathrm{Me}(\mathrm{R}) \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]+2 \mathrm{NH}_{3}$
3a, b
$\mathrm{R}=\mathrm{Et}(\mathbf{1 a}, \mathbf{2 a}, \mathbf{3 a}), \mathrm{Ph}(\mathbf{1 b}, \mathbf{2 b}, \mathbf{3 b})$
The trichlorides of yttrium, lanthanum, samarium and lutetium react with $\mathbf{3 a}$ and $\mathbf{3 b}$ in THF with formation of the dimeric lanthanidocene chlorides $\mathbf{4 a}, \mathbf{b}$ to $\mathbf{7 a}$, b (Scheme 1).

Like dicyclopentadienyl lanthanide chlorides in general, $\mathbf{4 a}, \mathbf{b}$ to $\mathbf{7 a}, \mathbf{b}$ are very sensitive towards air and moisture. Compounds $\mathbf{4 b}-\mathbf{7 b}$ containing the phenyl substituted silicon bridge are moderately soluble in saturated and unsaturated hydrocarbons like hexane, benzene or toluene whereas the complexes $\mathbf{4 a}-7 \mathbf{a}$ with the ethyl group at the silicon bridge are only slightly soluble in toluene and benzene. All compounds are soluble in donor solvents like diethylether or tetrahydrofuran.

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{7 a}, \mathbf{5 b}, \mathbf{6 b}$ and $\mathbf{7 b}$ in d_{5}-pyridine and an X-ray structural analysis of poor quality crystals of 7a [18] indicate that monomeric, THF containing complexes of the type $\mathrm{MeRSi}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)$ $\mathrm{LnCl}(\mathrm{THF})$ are the primary products which on vacuum drying lose their THF with formation of dimers. In accordance with this fact, no evidence is found for coordinated THF performing elemental analysis of the dried complexes. $\mathbf{4 a}$, \mathbf{b} to $\mathbf{7 a}$, \mathbf{b} have two possibilities to dimerize, either with two equal or with two different cyclopentadienyl ligands at the same site of the lanthanide atoms. For each of these isomers two racemic homochiral and one meso heterochiral isomer can exist. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR solution spectra of $\mathbf{5 a}, \mathbf{b}$ and $\mathbf{6 a}, \mathbf{b}$ which show two signals with an intensity ratio of $2: 1$ for the CH_{3} group attached to each bridging silicon atom indicate the presence of two isomers with different rings on the same site of the lanthanide atoms. In the mass spectra of $\mathbf{4 a}, \mathbf{b}$ to $\mathbf{7 a}, \mathbf{b}$ the peak for the ion of the dimeric molecules is the peak of highest mass.

The single crystal X-ray structure determination of crystals of $6 \mathbf{a}$ obtained by recrystallization from etherTHF shows the dinuclear complex with two molecules of THF completing the coordination sphere around the samarium atoms (Fig. 1). These solvent molecules are removed by vacuum drying of the complex. The vacuum dried, solvent-free dinuclear lanthanidocene chlorides are less soluble in hydrocarbons and diethyl ether than the complexes crystallized from THF.

Zirconiumtetrachloride reacts with 3a and 3b to give the zirconocene dichlorides $\mathbf{8 a}$ and $\mathbf{8 b}$ (Scheme 2).

Fig. 1. ORTEP plot [19] of $\mathbf{6 a}$. Selected bond distances [\AA] and angles [${ }^{\circ}$] (estimated standard deviations in parentheses; Cp and Cp^{*} define the centroids of the ring atoms $\mathrm{C}(1)-\mathrm{C}(5)$ and $\mathrm{C}(13)-\mathrm{C}(17)$, respectively: $\mathrm{Sm}-\mathrm{Cl} 2.7793(14), \mathrm{Sm}-\mathrm{Cl}^{\prime} 2.8169(9)$, $\mathrm{Sm}-\mathrm{O} 2.614(2)$, $\mathrm{Sm}-\mathrm{Cp}^{*} 2.446(2)$,
 $\mathrm{Cp}^{*}-\mathrm{Sm}-\mathrm{Cl} 122.79(4), \mathrm{Cp}-\mathrm{Sm}-\mathrm{Cl}^{\prime} 95.75(3), \mathrm{Cp}^{*}-\mathrm{Sm}-\mathrm{Cp} 118.60(5), \mathrm{C}(1)-\mathrm{Si}-\mathrm{C}(13) 100.29(13), \mathrm{C}(10)-\mathrm{Si}-\mathrm{C}(12) 107.0(2)$.

Both zirconocenes are air and moisture sensitive. Compound $\mathbf{8 b}$ is better soluble in saturated and unsaturated hydrocarbons and in donor solvents than $\mathbf{8 a}$. NMR and mass spectra show the expected patterns. The molecular structure of 8 a could be proved by single crystal X-ray structure determination (Fig. 2).
The new lanthanidocene chlorides react with sodium acetate forming the corresponding lanthanidocene acetates with $80-90 \%$ yield (Scheme 3).

Compared to the corresponding chlorides, the acetates are more stable against air and moisture, better soluble in unpolar solvents like hexane, benzene or toluene and much better in polar solvents like THF or diethyl ether. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectra ($\mathrm{d}_{5}-$ pyridine, 20 and $-40^{\circ} \mathrm{C}$) show patterns which are

$$
\mathrm{R}=\mathrm{Et} \quad(\mathbf{8 a}), \mathrm{Ph} \quad(\mathbf{8 b})
$$

Scheme 2.
characteristic of monomeric complexes containing only one stereocenter, thus giving rise for the formation of only one pair of enantiomers. In the case of 11a, \mathbf{b} and 12b, the monomeric structure was confirmed by cryoscopic molecular weight determinations in benzene. The mass spectra show the parent ion and the fragmentation pattern expected for the monomeric compounds, but also fragments which must be assigned to the dimeric molecular ion. Therefore, a dimeric structure of the complexes in the solid state can not be excluded.

3. Molecular structures of 6 a and 8a

The molecular structures of $\mathbf{6 a}$ and $\mathbf{8 a}$ were determined by single crystal X-ray diffraction. The crystal data and refinement parameters are given in Table 1.
Fig. 1 shows an ORTEP plot [19] of $\mathbf{6 a}$ with the atomic numbering scheme. Compound $\mathbf{6 a}$ crystallizes as a dimer with one tetrahydrofuran molecule coordinated to each samarium resulting in nine coordinate Sm^{3+} centers. Tetrahydrofuran solvated structures were also found in some other biscyclopentadienylsamarium chlorides such as $\left[\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2} \mathrm{Sm}(\mathrm{THF}) \mathrm{Cl}\right]_{2}[20]$. The coordination pattern around the samarium centers of $\mathbf{6 a}$ is of the $\left(\mathrm{C}_{5} \mathrm{R}_{5}\right)_{2} \mathrm{MX}$ 'bent-sandwich' type and is roughly similar to that of other crystallographically character-

Fig. 2. ORTEP plot [19] of 8a. Selected bond distances [\AA] and angles $\left.{ }^{\circ}\right]$ (estimated standard deviations in parentheses; Cp and Cp^{*} define the centroids of the ring atoms $\mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(3), \mathrm{C}\left(3^{\prime}\right), \mathrm{C}\left(2^{\prime}\right)$ and $\mathrm{C}(8)$, $\mathrm{C}(9) \mathrm{C}(10), \mathrm{C}\left(10^{\prime}\right), \mathrm{C}\left(9^{\prime}\right)$, respectively: $\mathrm{Zr}-\mathrm{Cl} 2.4336(8), \mathrm{Zr}-\mathrm{Cp}^{*}$ $2.218(2), \mathrm{Zr}-\mathrm{Cp} 2.219(2), \mathrm{Si}-\mathrm{C}(6) 1.856(3), \mathrm{Si}-\mathrm{C}(1) 1.875(3), \mathrm{Si}-$ $\mathrm{C}(8)$ 1.876(3); $\mathrm{Cl}-\mathrm{Zr}-\mathrm{Cl}^{\prime}$ 101.17(5), $\mathrm{Cp}^{*}-\mathrm{Zr}-\mathrm{Cl}^{\prime} 106.32$ (3), $\mathrm{Cp}-\mathrm{Zr}-$ $\mathrm{Cl} 106.77(6), \quad \mathrm{Cp} *-\mathrm{Zr}-\mathrm{Cp} \quad 126.70(4), \quad \mathrm{C}(1)-\mathrm{Si}-\mathrm{C}(8) \quad 93.82(14)$, $\mathrm{C}(6)-\mathrm{Si}-\mathrm{C}\left(6^{\prime}\right) 107.0(2)$.
ized lanthanidocenes with Cl and THF ligation. The principal structural change that arises when the cyclopentadienyl rings are linked by a dialkylsilyl group, is a decrease of the ring centroid- Sm -ring centroid angle compared to samarocenes with unbridged cyclopentadienyl rings. The angle of $118.60(5)^{\circ}$ in $\mathbf{6 a}$ is in the same range as in $\left[\mathrm{Me}_{4} \mathrm{C}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{SmCl}(\mathrm{THF})\right]_{2}$ (115.4 and 115.8 ${ }^{\circ}$) [21], but smaller than in $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{SmCl}(\mathrm{THF}) \quad\left(133(1)^{\circ}\right) \quad[22], \quad\left[\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2} \mathrm{Sm}\right.$ (THF) $(\mu-\mathrm{Cl})]_{2}\left(126.4^{\circ}\right)$ [20] and in the $\mathrm{Me}_{2} \mathrm{Ge}$-bridged samarocene $\mathrm{Me}_{2} \mathrm{Ge}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)_{2} \mathrm{Sm}(\mu-\mathrm{Cl})_{2} \mathrm{Li}(\mathrm{THF})_{2}$ (124.5 ${ }^{\circ}$) [23]. This effect also could be observed for $\mathbf{8 a}$. Structure refinement of 6 a shows the terminal carbon atom of the ethyl substituent to be disordered racemically ($50: 50 \%$) between the positions $\mathrm{C}(11)$ and $\mathrm{C}\left(11^{\prime}\right)$. The bond lengths $\mathrm{Sm}-\mathrm{Cl}$ and $\mathrm{Sm}-\mathrm{Cl}^{\prime}$ are not equivalent (2.7793(14) and 2.8169(9) \AA), a situation which was also found for the $\mathrm{Sm}-\mathrm{Cl}$ distances in $\left[\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2}\right.$ $\mathrm{Sm}(\mathrm{THF}) \mathrm{Cl}]_{2}(2.759$ and $2.819 \AA$) [20]. Bridging $\mathrm{Sm}-\mathrm{Cl}$ distances are usually longer than terminal $\mathrm{Sm}-\mathrm{Cl}$ distances as e.g. in [$\left.\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Sm}(\mathrm{THF}) \mathrm{Cl}\right](2.709 \AA)$ [22]. The bond length $\mathrm{Sm}-\mathrm{O}$ (2.614(2) \AA) is slightly longer than that in $\left[\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2} \mathrm{Sm}(\mathrm{THF}) \mathrm{Cl}\right]_{2}(2.563 \AA$ A) [20] and very similar to that in $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Sm}(\mathrm{THF})_{2}\right]$ (2.63 \AA) [24]. The distance $\mathrm{Si}-\mathrm{C}(10)(1.881(4) \AA$) is only slightly longer than the distance $\mathrm{Si}-\mathrm{C}(12)(1.875(4) \AA$) . They correspond to the bond lengths found in $\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{R}^{*}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right) \mathrm{SmCH}\left(\mathrm{SiMe}_{3}\right)_{2}\right] \quad(1.848$ and $1.861 \AA$) or in $\left[\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{R}^{*}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right) \mathrm{SmN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$
(1.85 and $1.87 \AA$) with $\mathrm{R}^{*}=$ neomenthyl [25]. All other bond lengths and angles are comparable to those found in samarocene chloride complexes like $\left[\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2} \mathrm{Sm}\right.$ (THF)Cl] $]_{2}[20],\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Sm}(\mathrm{THF}) \mathrm{Cl}$ [22], and $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ $\mathrm{Sm}(\mathrm{Cl})(\mathrm{THF})_{2}(\mu-\mathrm{Cl})_{2} \mathrm{Sm}(\mathrm{Cl})_{2}(\mathrm{THF})_{3}[26]$.
Solution of the X-ray diffraction data of 8a generated the structure shown in Fig. 2. The crystal consists of monomeric molecules in a racemic $1: 1$ mixture with regard to the ethyl and methyl group at the bridging silicon atom. The angle ring centroid $-\mathrm{Zr}-$ ring centroid of $126.70(4)^{\circ}$ and the angle $\mathrm{C}(1)-\mathrm{Si}-\mathrm{C}(8)$ of $93.88(14)^{\circ}$ are similar to those in $\mathrm{Me}_{2} \mathrm{Si}_{\mathrm{B}}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{ZrCl}_{2}\left(125.40^{\circ} /\right.$ 93.2 ${ }^{\circ}$ [2], $\mathrm{Me}_{2} \mathrm{Si}\left(1-\mathrm{C}_{5} \mathrm{H}_{2}-3-{ }^{-} \mathrm{Bu}-5-\mathrm{Me}\right)_{2} \mathrm{ZrCl}_{2}$ ($126.7^{\circ} /$ 94.3°) [14]b and $\mathrm{rac}-\mathrm{Me}_{2} \mathrm{Si}\left(1-\mathrm{C}_{5} \mathrm{H}_{2}-2-\mathrm{Me}-4-\mathrm{Ph}\right)_{2} \mathrm{ZrCl}_{2}$ $\left(126.0^{\circ} / 93.3^{\circ}\right)$ [14]e. The angle $\mathrm{Cl}-\mathrm{Zr}-\mathrm{Cl}^{\prime}\left(101.17(5)^{\circ}\right)$ is larger than that in comparable compounds like
 $\mathrm{Me})_{2} \mathrm{ZrCl}_{2}\left(97.6^{\circ}\right)$ [14]a or $\mathrm{rac}-\mathrm{Me}_{2} \mathrm{Si}\left(1-\mathrm{C}_{5} \mathrm{H}_{2}-2-\mathrm{Me}-4-\right.$ $\mathrm{Ph})_{2}-\mathrm{ZrCl}_{2}\left(98.8^{\circ}\right)$ [14]e. All other bond distances and angles are similar to those found in $\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ZrCl}_{2}$ [2], $\mathrm{Me}_{2} \mathrm{Si}\left(1-\mathrm{C}_{5} \mathrm{H}_{2}-3 \text { - }^{-} \mathrm{Bu}-5-\mathrm{Me}\right)_{2} \mathrm{ZrCl}_{2}$ [14]a and rac$\mathrm{Me}_{2} \mathrm{Si}\left(1-\mathrm{C}_{5} \mathrm{H}_{2}-2-\mathrm{Me}-4-\mathrm{Ph}\right)_{2} \mathrm{ZrCl}_{2}$ [14]e.
In accordance with the larger ionic radius of samarium compared to zirconium, the bond distances $\mathrm{M}-$ $\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ and $\mathrm{M}-\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)$ decrease in the order 6a (2.458(2), $2.446(2) \AA$) to $\mathbf{8 a}(2.219(2), 2.218(2) \AA$) just as do the angles $\mathrm{C}(1)-\mathrm{Si}-\mathrm{C}(13)$ and $\mathrm{C}(1)-\mathrm{Si}-\mathrm{C}(8)$ (6a $\left(100.29(13)^{\circ}\right.$, 8a $\left(93.82(14)^{\circ}\right)$, whereas the angles ring centroid-M-ring centroid increase in the same order (6a $118.60(5)^{\circ}$, 8a $\left.126.70(4)^{\circ}\right)$.

4. Catalytic activity of $8 \mathrm{a}, \mathbf{8 b}$ and $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{ZrCl}_{2}\right]$ (13)

The polymerization of ethylene and propylene was conducted at $30^{\circ} \mathrm{C}$ in the presence of $\mathbf{8 a} / \mathrm{MAO}, \mathbf{8 b} /$ MAO and the unbridged system $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{ZrCl}_{2}\right]$ (13)/MAO. The results of the experiments are given in Table 2.

Besides the electronic and steric influence of the silylene bridge itself, the linkage of the two cyclopentadienyl ligands changes structure and energy of the metal orbitals [27] and the angle between the ring planes, the last fact influencing the space available for reactions at the metal center. Different reactivities in ethylene and propylene polymerizations should be the consequence.
The results of the polymerization experiments using the zirconocene complexes $\mathbf{8 a}$ and $\mathbf{1 3}$ as catalysts demonstrate that, compared to the unbridged complex 13, the silyl-bridged complex 8a shows a notable decrease in ethylene polymerization activity, but a strong increase in propylene polymerization activity. A similar trend is observed for the molecular weights of the polymers obtained, though that of polyethylene is much

NaO2 CCH_{3}
-NaCl

5a,b, 6a,b

9a,b-12a,b
$\mathrm{R}=\mathrm{Et}, \mathrm{n}=1, \mathrm{Ln}=\mathrm{Y}(\mathbf{9 a}), \mathrm{Lu}(\mathbf{1 2 a}) ; \mathrm{n}=2, \mathrm{Ln}=\mathrm{La}(\mathbf{1 0 a}), \mathrm{Sm}(\mathbf{1 1 a})$
$\mathrm{R}=\mathrm{Ph}, \mathrm{n}=1, \mathrm{Ln}=\mathrm{Y}(\mathbf{9 b}), \mathrm{Lu}(\mathbf{1 2 b}) ; \mathrm{n}=2, \mathrm{Ln}=\mathrm{La}(\mathbf{1 0 b}), \mathrm{Sm}(\mathbf{1 1 b})$
Scheme 3.
more susceptible to changes in the ligand structure of the catalyst compared to the results in propylene polymerization where the increase in molecular weight is rather small. Exchange of ethyl for phenyl as one of the two substituents bound to the silylene bridge leads to a decrease in polymerization activity for both monomers. Interestingly, a strong increase in the molecular weight of the polyethylene produced is observed whereas virtually no influence is detected in propylene polymerization.

No significant differences were observed in pentad distribution between the simple and the bridged zirconocenes and also an exchange of the substituents bound to the bridging silicon atom had no influence on the microstructure of the polymer. All examined metallocenes produce atactic polypropylene $(\mathrm{mm}=19 \%, \mathrm{mr}=50 \%, \mathrm{rr}=31 \%)$. Only a very slight preference for syndiotactic enchainment could be detected that can be attributed to the different size of the $\mathrm{C}_{5} \mathrm{H}_{5}$ and the $\mathrm{C}_{5} \mathrm{Me}_{5}$ ligands. Polymer ${ }^{13} \mathrm{C}$-NMR also revealed that for these metallocenes β-hydrogen elimination is the single chain termination mechanism. Vinyl or isopropyl chain ends representing β-methyl elimination which was found to be the main termination pathway in the highly
crowded $\mathrm{Cp}_{2}^{*} \mathrm{ZrCl}_{2} / \mathrm{MAO}$ system [28] were not detected.

5. Experimental details

5.1. General comments

All reactions were carried out in an atmosphere of dry, oxygen free nitrogen using Schlenk techniques. Solvents were dried over sodium/benzophenone and distilled prior to use. The NMR spectra were recorded on a Bruker ARX 200 or a Bruker ARX 400 spectrometer $\left({ }^{1} \mathrm{H}: \mathrm{d}_{5}\right.$-pyridine, $20^{\circ} \mathrm{C}$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$: $\mathrm{d}_{5}-$ pyridine, $20^{\circ} \mathrm{C} ; \delta$ in ppm relative to the remaining proton content of the solvent; unless otherwise specified). CH analyses were performed on a PerkinElmer 240 C elemental analyser. Mass spectra were determined on a Varian MAT 311 A spectrometer using electron impact. Kryoscopic molecular weight measurements were carried out in benzene. The ligand precursors $\mathrm{Na}\left[\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right]$ [29] and $\mathrm{Na}\left[\mathrm{C}_{5} \mathrm{H}_{5}\right.$] [30] as well as the anhydrous LnCl_{3} [31] were prepared by published procedures. Dichloro(ethyl)methyl- and dichloro(methyl)phenylsilane (ABCR) were distilled prior to use.
5.2. Syntheses of the ligands

5.2.1. Chloro(ethyl)(methyl)(2,3,4,5-tetramethylcyclopentadienyl)silane (1a)

A solution of $4.00 \mathrm{~g}(29.82 \mathrm{mmol}) \mathrm{Na}\left[\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right]$ in 80 ml of THF was cooled to $-78^{\circ} \mathrm{C} .4 .26 \mathrm{~g}(4.04 \mathrm{ml}=$ 29.82 mmol) of dichloro(ethyl)(methyl)silane were added over a period of 30 min . The reaction mixture was warmed very slowly to room temperature (over 6 h) and stirred for another 12 h . The solvent was removed under reduced pressure, and 80 ml of $\mathrm{Et}_{2} \mathrm{O}$ were

Table 1
Crystal data and structure refinement for $\mathbf{6 a}$ and $\mathbf{8 a}$

	6 a	8a
Empirical formula	$\begin{aligned} & \mathrm{C}_{34} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{Si}_{2} \mathrm{Sm}_{2} \\ & \left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2} \end{aligned}$	$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{SiZr}$
Formula weight ($\mathrm{g} \mathrm{mol}^{-1}$)	1018.69	418.57
Temperature (K)	240(2)	162(2)
Crystal system	Triclinic	Orthorhombic
Space group	$P \overline{1}$ (No. 2)	Pnma (No. 62)
Unit cell dimensions		
$a(\mathrm{~A})$	11.225(5)	13.417(2)
b (\AA)	11.6278(2)	9.938(2)
c (A)	9.116(2)	13.486(4)
$\alpha\left({ }^{\circ}\right)$	93.865(14)	
$\beta{ }^{\circ}{ }^{\circ}$	113.57(2)	
$\gamma\left({ }^{\circ}\right.$)	77.98(2)	
Volume (m^{3})	$1066.4(6) \times 10^{-30}$	$1798.3(6) \times 10^{-30}$
Z	2	4
Density (calculated, mg m^{-3})	1.602	1.546
Absorption coefficient (mm^{-1})	2.820	0.916
$F(000)$	512	840
Crystal size (mm)	$0.30 \times 0.36 \times 0.50$	$0.20 \times 0.23 \times 0.33$
Aperture (mm)	2.4	2.3
Scan angle (${ }^{\circ}$)	$(0.86+0.35 \tan \theta)$	$(0.68+0.35 \tan \theta)$
Range of data collection	$4^{\circ}<2 \theta<55^{\circ}$	$2^{\circ}<2 \theta<55^{\circ}$
Index ranges	$\begin{aligned} & 0 \leq h \leq 14,-15 \leq \\ & k \leq 15,-11 \leq l \leq \\ & 11 \end{aligned}$	$\begin{aligned} & 0 \leq h \leq 17,0 \leq k \leq \\ & 12,-17 \leq l \leq 17 \end{aligned}$
Reflections collected	5213	4202
Independent reflections	$\begin{aligned} & 4852\left(R_{(\mathrm{int})}=\right. \\ & 0.0163) \end{aligned}$	$\begin{aligned} & 2137\left(R_{(\mathrm{int})}=\right. \\ & 0.0203) \end{aligned}$
Refinement method	Full-matrix leastsquares on F^{2}	Full-matrix leastsquares on F^{2}
Data/restraints/parameters	4829/0/235	2106/0/106
Goodness-of-fit on F^{2} c	1.060	1.086
Final R indices [$I>2 \sigma(I)$]	$\begin{aligned} & R_{1}^{\mathrm{a}}=0.0284, \\ & w R_{2}^{\mathrm{b}}=0.0786 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}^{\mathrm{a}}=0.0331, \\ & w R_{2}^{\mathrm{b}}=0.0852 \end{aligned}$
R indices (all data)	$\begin{aligned} & R_{1}=0.0295, \\ & w R_{2}=0.0856 \end{aligned}$	$\begin{aligned} & R_{1}=0.0439, \\ & w R_{2}=0.1108 \end{aligned}$
Largest difference peak and hole (e \AA^{-3})	Max. 1.280, min. -1.044	$\begin{aligned} & \text { Max. } 0.653 \text {, min. } \\ & -0.440 \end{aligned}$

[^1]added into the reaction flask. The resulting mixture was stirred for 10 min , filtered and the filtrate evaporated until a yellow liquid remained. Fractional distillation yielded a pale yellow liquid. Yield $5.22 \mathrm{~g}(76 \%)$ of $\mathbf{1 a}$. B.p.: $61-63^{\circ} \mathrm{C} / 0.1 \mathrm{mbar}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$: 0.11 (s, 3H, SiMe), $0.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 0.59$ (m, $\left.1 \mathrm{H}, \quad \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), \quad 0.92(\mathrm{t}, \quad 3 \mathrm{H}, \quad J(\mathrm{HH})=4 \quad \mathrm{~Hz})$, $\mathrm{SiCH}_{2} \mathrm{CH}_{3}$), 1.71 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}$), 1.93 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}$), $2.95\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SiC}_{5} \mathrm{H}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR (100.64 MHz , $\mathrm{C}_{6} \mathrm{D}_{6}$): $-1.64,7.06,8.59,10.73,15.34,55.58,131.46$, 131.60, 137.83.

5.2.2. [(Cyclopentadienyl)(ethyl)(methyl)(2,3,4,5-tetra-

 methylcyclopentadienyl)silyl]disodium (3a)$\mathrm{Na}\left[\mathrm{C}_{5} \mathrm{H}_{5}\right](2.01 \mathrm{~g}, 22.80 \mathrm{mmol})$ was dissolved in 10 ml of THF and was added to a solution of $5.19 \mathrm{~g}(22.80$ mmol) of $\mathbf{1 a}$ in 30 ml of THF at $-78^{\circ} \mathrm{C}$. The reaction mixture was then allowed to warm up to ambient temperature. After stirring for 12 h , the THF was removed in vacuo, and the orange residue was extracted with hexane. The hexane was evaporated under reduced pressure to yield 4.83 g (82%) of (cyclopentadienyl)(ethyl)(methyl)(tetramethylcyclopentadienyl) silane (2a) as an orange oil, which was used without further purification.
$\mathrm{NaNH}_{2}(1.47 \mathrm{~g}, 37.39 \mathrm{mmol})$ was suspended in 60 ml of THF, and $4.83 \mathrm{~g}(18.70 \mathrm{mmol})$ of 2a dissolved in 10 ml of THF were slowly added. The suspension was stirred for 12 h , filtered, and the solvent was removed in vacuo. The resulting pale brown residue was washed several times with hexane to obtain a cream-colored solid, which was dried in vacuo at 0.1 mbar. Yield 6.44 $\mathrm{g}(92 \%)$ of the adduct of $\mathbf{3 a}$ with 1 THF. Anal. Found: $\mathrm{C}, 66.73 ; \mathrm{H}, 8.11 . \mathrm{C}_{21} \mathrm{H}_{32} \mathrm{Na}_{2} \mathrm{OSi} \cdot\left(374.66 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ (3a). Calc.: C, $67.34 ; \mathrm{H}, 8.61 \%$. ${ }^{1} \mathrm{H}$-NMR (400 MHz): 0.92 (s, $3 \mathrm{H}, \mathrm{SiMe}$), 1.17 (m, 2H, $\mathrm{SiCH}_{2} \mathrm{CH}_{3}$), 1.41 (m, $3 \mathrm{H}, \mathrm{SiCH}_{2} \mathrm{CH}_{3}$), 1.61 (m, 4H, THF), $2.25(\mathrm{~s}, 6 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{Me}_{4}$), 2.64 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}$), 3.66 (m, 4H, THF), 6.65 $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ (100.64 MHz): $0.36,9.21,10.75,12.28,15.12,25.43$, $67.46,103.43,107.33,109.25,111.41,114.36,116.51$.

5.2.3. Chloro(methyl)(phenyl)(2,3,4,5-tetramethylcyclopentadienyl)silane (1b)

The procedure described above for the synthesis of 1a was carried out with $4.45 \mathrm{~g}(30.87 \mathrm{mmol})$ of $\mathrm{Na}\left[\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{H}\right]$ and $5.89 \mathrm{~g}(5.03 \mathrm{ml}=30.87 \mathrm{mmol})$ of dichloromethyl-(phenyl)silane in 70 ml of THF. Workup as described above and fractional distillation of the resulting yellow oil yielded a pale yellow liquid. Yield $4.65 \mathrm{~g}\left(55^{\circ} \%\right)$ of $\mathbf{1 b}$. B.p.: $94-96^{\circ} \mathrm{C} / 0.1 \mathrm{mbar}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 200 \mathrm{MHz}\right): 0.50(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiMe}), 1.67$ (s, $3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}$), $1.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}\right), 1.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}\right)$,

Table 2
Polymerization results obtained with $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{ZrCl}_{2}\right](\mathbf{1 3})$ and $\left[\mathrm{RR}^{\prime} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right) \mathrm{ZrCl}_{2}\right]\left(\mathrm{R}=\mathrm{Me} \text {; } \mathrm{R}^{\prime}=\mathrm{Et}(\mathbf{8 a}) \text {, } \mathrm{Ph}(\mathbf{8 b})\right)^{\mathrm{a}}$

Metallocene	Monomer	Activity ${ }^{\text {b }}$	$M_{\eta}\left(\mathrm{g} \mathrm{mol}^{-1}\right)$	$M_{\mathrm{w}} / M_{\eta}$	$T_{\mathrm{m}}\left({ }^{\circ} \mathrm{C}\right)$
13	Ethylene	22500	2135000	n.d. ${ }^{\text {c }}$	136
8a	Ethylene	6700	439000	n.d. ${ }^{\text {c }}$	134
8b	Ethylene	3600	1029000	n.d. ${ }^{\text {c }}$	137
13	Propylene	600	13900	2.0	$\mathrm{a}^{\text {d }}$
8a	Propylene	2800	16100	2.1	$\mathrm{a}^{\text {d }}$
8b	Propylene	1150	17500	1.9	$\mathrm{a}^{\text {d }}$

[^2]$2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}\right), 3.42\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SiC}_{5} \mathrm{H}\right), 7.43(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $50.32 \mathrm{MHz}):-2.58,11.11,11.13,14.15,14.38,55.95$, 127.49 , 128.31, 130.13, 133.62, 133.65, 134.63, 138.24, 148.98.

5.2.4. [(Cyclopentadienyl)(methyl)(phenyl)(2,3,4,5tetramethylcyclopentadienyl)silyl]disodium (3b)

Compound 1b ($4.60 \mathrm{~g}, 16.62 \mathrm{mmol}$) was dissolved in 60 ml of THF, and the solution was cooled to $-78^{\circ} \mathrm{C}$. Then, $1.46 \mathrm{~g}(16.62 \mathrm{mmol})$ of $\mathrm{Na}\left[\mathrm{C}_{5} \mathrm{H}_{5}\right]$ dissolved in 10 ml of THF were added slowly. The reaction mixture was allowed to warm up to room temperature very slowly over a period of 6 h and was stirred for 12 h at ambient temperature. The THF was evaporated in vacuo and the remaining residue was extracted with hexane. The solvent was removed under reduced pressure to yield 3.78 (74%) of (cyclopentadienyl)(methyl) (phenyl)(tetramethylcyclopentadienyl)silane (2b) as a dark yellow oil, which was used without further purification.

To a suspension of $0.95 \mathrm{~g}(24.68 \mathrm{mmol})$ of NaNH_{2} in 80 ml of THF were slowly added $3.78 \mathrm{~g}(12.34 \mathrm{mmol})$ of $\mathbf{2 b}$ dissolved in 10 ml of THF. The reaction mixture was stirred for 12 h , filtered and the THF was evaporated under reduced pressure. The resulting pale brown residue was washed several times with hexane to give a cream-coloured solid, which was dried in vacuo at 0.1 mbar. Yield $3.59 \mathrm{~g}(83 \%)$ of 3b. Anal. Found: C, 70.99 ; $\mathrm{H}, 6.50 . \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{Na}_{2} \mathrm{Si}\left(350.56 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ (3b). Calc.: C, 71.97; H, 6.90\%. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 MHz): 1.06 (s, 3H, SiMe), 2.23 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}$), 2.36 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}$), 6.73 $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 7.24(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 8.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(50.32 \mathrm{MHz}): 3.69,12.19,15.74,102.28$, 107.74, 110.75, 111.87, 113.98, 115.10, 126.76, 135.73, 148.71 .

5.3. Syntheses of metallocene chlorides with ethyl, methyl substitution at the bridging silicon atom

5.3.1. [Bis(μ-chloro)(cyclopentadienyl)(ethyl)(methyl)-(2,3,4,5-tetramethylcyclopentadienyl)silyl]diyttrium (4a)

A 100 ml Schlenk flask was charged with $1.17 \mathrm{~g}(2.83$ $\mathrm{mmol})$ of $\mathrm{YCl}_{3}(\mathrm{THF})_{3}$ and $1.06 \mathrm{~g}(2.83 \mathrm{mmol})$ of 3 a . An 80 ml volume of THF was added and the reaction mixture was stirred for 12 h at room temperature, followed by refluxing with stirring for 12 h and additional stirring for 12 h at ambient temperature. The THF was removed in vacuo. The resulting yellow solid was first washed with 60 ml of $\mathrm{Et}_{2} \mathrm{O}$ and the product was then separated by soxhlet extraction with 80 ml of $\mathrm{Et}_{2} \mathrm{O}$. The pale yellow extract was concentrated to 25 ml and cooled to $-30^{\circ} \mathrm{C}$. The resulting colourless microcrystalline product was isolated by decantation and subsequent vacuum drying at 0.1 mbar. Yield $0.39 \mathrm{~g}(36 \%)$ of $4 \mathbf{a}$. Anal. Found: C, 53.57; H, 6.40. $\mathrm{C}_{34} \mathrm{H}_{48} \mathrm{Cl}_{2} \mathrm{Si}_{2} \mathrm{Y}_{2}$ (761.73 $\mathrm{g} \mathrm{mol}^{-1}$) (4a). Calc.: C, 53.62; H, 6.35\%. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz): 0.88 (s, 3H, SiMe), 1.33 (m, 5H, SiEt), 1.69 (br $\mathrm{s}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}$), $2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}\right.$), $2.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}\right)$, 6,20 (m, 1H, $\mathrm{C}_{5} \mathrm{H}_{4}$), 6,21 (m, $\left.1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6,70(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right) \cdot{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(100,64 \mathrm{MHz}):-2.98,7.07,7.59$, $10.86,13.55,13.82,103.05,113.05,113.55,114.20$, $118.05,118.46,121.69,122.59,125.39 . \mathrm{MS}\left(220^{\circ} \mathrm{C},{ }^{35} \mathrm{Cl}\right.$, $\left.{ }^{28} \mathrm{Si}, m / z(\%)\right): 760(35)\left[\left(\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{YCl}\right)_{2}=\right.$ $\mathrm{D}]^{+}, 731$ (81) $[\mathrm{D}-\mathrm{Et}]^{+}, 716$ (18) [D-Et-Me] ${ }^{+}, 380(23)$ $\left[\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{YCl}\right]^{+}, 351$ (44) $\left[\mathrm{MeSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\right.$ $\left.\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{YCl}\right]^{+}, 345$ (100) $\left[\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Y}\right]^{+}$, 336 (40) $\left[\mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{YCl}\right]^{+}, 316(40)\left[\mathrm{MeSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\right.$ $\left.\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Y}\right]^{+}$and other fragments.

5.3.2. [Bis(μ-chloro)(cyclopentadienyl)(ethyl)(methyl)-(2,3,4,5-tetramethylcyclopentadienyl)silyl]dilanthanum (5a)

The preceding described synthesis for $\mathbf{4 a}$ was carried out with $1.84 \mathrm{~g}(5.79 \mathrm{mmol})$ of $\mathrm{LaCl}_{3}(\mathrm{THF})$ and 2.17 g
(5.79 mmol) of $\mathbf{3 a}$ in 70 ml of THF to yield a pale yellow solid. Yield $0.44 \mathrm{~g}(18 \%)$ of 5a. Anal. Found: C, 48.39; H, 5.85. $\mathrm{C}_{34} \mathrm{H}_{48} \mathrm{Cl}_{2} \mathrm{La}_{2} \mathrm{Si}_{2}\left(861.73 \mathrm{~g} \mathrm{~mol}^{-1}\right)(\mathbf{5 a})$. Calc.: C, 47.39; H, 5.61\%. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz): 0.70 (s, $2 \mathrm{H}, \mathrm{SiMe}$), 0.73 (s, $1 \mathrm{H}, \mathrm{SiMe}$), 1.29 (m, 5H, SiEt), 1.99-2.17 (m, 12H, $\mathrm{C}_{5} \mathrm{Me}_{4}$), $6.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.22$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ (100,64 MHz): - 3.97, - 2.85, 7.41, 7.80, 11.06-13.74, $112.08,113.23,115.38,116.06,117.67,120.88,121.08$, 121.61, 121.67, 121.98. MS $\left(329^{\circ} \mathrm{C},{ }^{35} \mathrm{Cl},{ }^{28} \mathrm{Si},{ }^{139} \mathrm{La}\right.$, $m / z(\%)): 860(21)\left[\left(\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{LaCl}\right)_{2}=\mathrm{D}\right]^{+}$, 725 (15) [D-($\left.\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{SiMeEt}^{+}$, 513 (37) [D-2($\left.\mathrm{C}_{5} \mathrm{Me}_{4}\right)$ SiMeEt $]^{+}, 430(26)\left[\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{LaCl}\right]^{+}, 395$ (100) $\left[\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{La}\right]^{+}, 366$ (18) [MeSi $\left.\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{La}\right]^{+}$and other fragments.
5.3.3. [Bis(μ-chloro)(cyclopentadienyl)(ethyl)(methyl)-(2,3,4,5-tetramethylcyclopentadienyl)silyl]disamarium (ba)

Compound 6a was prepared analogously to $\mathbf{4 a}$ from $0.97 \mathrm{~g}(3.78 \mathrm{mmol})$ of SmCl_{3} and $1.42 \mathrm{~g}(3.78 \mathrm{mmol})$ of 3a in 60 ml of THF as an orange microcrystalline solid, which was recrystallized from $\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}$ (10:1) at $30^{\circ} \mathrm{C}$ to obtain single crystals for X-ray structure determination. Yield $0.89 \mathrm{~g}(53 \%)$ of $\mathbf{6 a}$. Anal. Found: C, 46.52; $\mathrm{H}, 5.52 . \mathrm{C}_{34} \mathrm{H}_{48} \mathrm{Cl}_{2} \mathrm{Si}_{2} \mathrm{Sm}_{2}$ ($884.75 \mathrm{~g} \mathrm{~mol}^{-1}$) (6a). Calc.: C, 46.11 ; H, 5.46%. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz): -0.35 (s, $2 \mathrm{H}, \mathrm{SiMe}),-0.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{SiMe}), 0.73(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{SiCH}_{2} \mathrm{CH}_{3}$), $1.13\left(\mathrm{~m}, 1.25 \mathrm{H}, \quad \mathrm{SiCH} \mathrm{CH}_{3}\right), 1.52$ (m, $\left.0.75 \mathrm{H}, \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 1.83-2.11\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}\right), 5.57$ $\left(\mathrm{s}, 0.66 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.69\left(\mathrm{~s}, 0.33 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 9.05(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 9.72\left(\mathrm{~s}, 0.66 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 9.81\left(\mathrm{~s}, 0.33 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$, $12.78\left(\mathrm{~s}, \quad 0.66 \mathrm{H}, \quad \mathrm{C}_{5} \mathrm{H}_{4}\right), \quad 12.95\left(\mathrm{~s}, \quad 0.33 \mathrm{H}, \quad \mathrm{C}_{5} \mathrm{H}_{4}\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR (100,64 MHz): $-0.39,-0.30,5.01$, $7.29,8.22,10.47,11.55,11.70,14.50,14.69,18.79-$ $18.91,95.39,103.11,105.10,107.28,108.01,111,37$, $115.66,117.09,117.95,118.55,118.98,119.43,126.70$, 131.01, 134.27. MS $\left(220^{\circ} \mathrm{C},{ }^{35} \mathrm{Cl},{ }^{28} \mathrm{Si},{ }^{152} \mathrm{Sm}, m / z(\%)\right)$: 886 (42) $\left[\left(\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{SmCl}\right)=\mathrm{D}\right]^{+}, 857$ (22) $[\mathrm{D}-\mathrm{Et}]^{+}, 443(23)\left[\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{SmCl}\right]^{+}, 408$ (100) $\left[\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Sm}\right]^{+}, 399$ (17) $\left[\mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\right.$ $\left.\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{SmCl}\right]^{+}, 379(15)\left[\mathrm{MeSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Sm}\right]^{+}$and other fragments.

5.3.4. [Bis(μ-chloro)(cyclopentadienyl)(ethyl)(methyl)-

(2,3,4,5-tetramethylcyclopentadienyl)silyl]dilutetium (7a)
The procedure described above for the synthesis of $4 \mathbf{a}$ was followed with $1.13 \mathrm{~g}(4.01 \mathrm{mmol})$ of LuCl_{3} and $1.50 \mathrm{~g}(4.01 \mathrm{mmol})$ of $\mathbf{3 a}$ in 70 ml of THF to yield a colorless microcrystalline solid, which was recrystallized from $\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}(10: 1)$ to obtain single crystals for X-ray structure determination. Yield $0.47 \mathrm{~g}(25 \%)$ of 7a. Anal. Found: C, 43.65; H, 4.84. $\mathrm{C}_{34} \mathrm{H}_{48} \mathrm{Cl}_{2} \mathrm{Lu}_{2} \mathrm{Si}_{2}$ ($933.87 \mathrm{~g} \mathrm{~mol}^{-1}$) (7a). Calc.: C, 43.73; H, 5.18%. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz): 0.86 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SiMe}$), 1.28-1.45 (m, $5 \mathrm{H}, \mathrm{SiEt}), 1.60$ (m, THF), 1.62 (br s, $6 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}$), 2.11
(s, $3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}$), 2.13 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}$), 3.64 (m, THF), $6,17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) 6,25(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(100,64 \mathrm{MHz}):-3.07,7.05$, $7.84,10.74,11.00,13.61,13.89,25,42,67.44,102.94$, $111.70,112.34,113.33,118.15,118.57,124.90,124.94$, 130.55. MS $\left(220^{\circ} \mathrm{C},{ }^{35} \mathrm{Cl},{ }^{28} \mathrm{Si}, m / z\right.$ (\%)): 932 (37) $\left[\left(\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{LuCl}\right)_{2}=\mathrm{D}\right]^{+}, \quad 903$ (100) [D$\mathrm{Et}]^{+}, 466$ (17) $\left[\mathrm{MeEtSi}-\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{LuCl}\right]^{+}, 437$ (23) $\left[\mathrm{MeSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{LuCl}\right]^{+}, 431$ (39) $[\mathrm{MeEtSi}$ $\left.\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)-\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Lu}\right]^{+}, 401$ (23) $\quad\left[\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right) \mathrm{Lu}-\right.$ $\mathrm{Cl}]^{+}$and other fragments.

5.3.5. [(Cyclopentadienyl)(ethyl)(methyl)(2,3,4,5-tetramethylcyclopentadienyl)silyl]zirconiumdichloride (8a)

1.92 g (8.24 mmol) of ZrCl_{4} were carefully dissolved in 40 ml of THF and $3.08 \mathrm{~g}(8.24 \mathrm{mmol})$ of 3 a were added. The suspension was stirred for 48 h at ambient temperature. The solvent was removed in vacuo, and the yellow residue was extracted twice with 40 ml of $\mathrm{Et}_{2} \mathrm{O}$. The yellow extracts were concentrated to 25 ml and cooled to $-30^{\circ} \mathrm{C}$. The resulting pale yellow crystals were isolated by decantation and subsequent vacuum drying. Single crystals for X-ray structure determination were obtained by recrystallizing the product from $\mathrm{Et}_{2} \mathrm{O} /$ THF $(10: 1)$ at $0^{\circ} \mathrm{C}$. Yield $1.64 \mathrm{~g}(48 \%)$ of 8a. M.p. (sealed): $195^{\circ} \mathrm{C}$. Anal. Found: C, 48.68; H, 5.70. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{SiZr}\left(418.64 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ (8a). Calc.: C, 48.78; $\mathrm{H}, 5.78 \%$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz): 0.74 (s, 3H, SiMe), 1.18 (m, 5H, SiEt), $1.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}\right), 1.92$ ($\mathrm{s}, 3 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{Me}_{4}$), $2.05\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}\right), 5.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.90$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 7.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ (100.64 MHz): - 4.13, 6.29, 6.49, 11.92, 11.95, 14.40, $14.65,98.20,107.04,112.62,113.34,125.42,126.27$, 126.38, 127.01, 135.37, 135.41. MS $\left(120^{\circ} \mathrm{C},{ }^{35} \mathrm{Cl},{ }^{90} \mathrm{Zr}\right.$, $\left.{ }^{28} \mathrm{Si}, m / z(\%)\right): 416(55)\left[\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{ZrCl}_{2}\right]^{+}$, 381 (100) $\left[\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{ZrCl}\right]^{+}, 352$ (58) $\left[\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right) \mathrm{ZrCl}_{2}\right]^{+}, 346$ (6) $\left[\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5}\right.\right.$ $\left.\left.\mathrm{H}_{4}\right) \mathrm{Zr}\right]^{+}$, 331 (3) $\left[\mathrm{EtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Zr}\right]^{+}$, 317 (12) $\left[\mathrm{MeSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Zr}\right]^{+}, 302$ (5) $\left[\mathrm{Si}^{\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)}\right.$ $\mathrm{Zr}]^{+}, 296$ (5) $\left[\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{ZrCl}_{2}\right]^{+}, 282$ (4) [Me$\left.\mathrm{EtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right) \mathrm{Zr}\right]^{+}, 274$ (5) $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Zr}\right]^{+}, 226$ (6) $\left[\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Zr}\right]^{+}$and other fragments.

5.4. Syntheses of metallocene chlorides with methyl, phenyl substitution at the bridging silicon atom

5.4.1. [Bis(μ-chloro)(cyclopentadienyl)(methyl)(phenyl)-(2,3,4,5-tetramethylcyclopentadienyl)silyl]diyttrium (4b)

A 100 ml Schlenk flask was charged with 1.44 g (3.51 $\mathrm{mmol})$ of $\mathrm{YCl}_{3}(\mathrm{THF})_{3}$ and $1.23 \mathrm{~g}(3.51 \mathrm{mmol})$ of $\mathbf{3 b}$. A 60 ml volume of THF were added, and after stirring this mixture for 12 h at room temperature it was heated to reflux for 12 h followed by stirring at ambient temperature for additional 12 h . The THF was evaporated in vacuo, and the resulting yellow solid was
washed with 30 ml of $\mathrm{Et}_{2} \mathrm{O}$ and the residue was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were evaporated to dryness in vacuo and the product was isolated by soxhlet extraction with 80 ml of hexane. The pale yellow solution was evaporated to about 25 ml and cooled to $-30^{\circ} \mathrm{C}$ to give a cream-coloured solid, which was dried in vacuo at 0.1 mbar. Yield $0.69 \mathrm{~g}(46 \%)$ of 4b. Anal. Found: C, 58.13; H, 5.95. $\mathrm{C}_{42} \mathrm{H}_{48} \mathrm{Cl}_{2} \mathrm{Si}_{2} \mathrm{Y}_{2}\left(857.82 \mathrm{~g} \mathrm{~mol}^{-1}\right)(4 \mathrm{~b})$. Calc.: C, 58.81 ; $\mathrm{H}, 5.64 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz): 0.73 (s, 3H, SiMe), $1.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}\right), 1.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}\right.$), 1.75 ($\mathrm{s}, 3 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{Me}_{4}$), $1.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}\right), 6.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.73$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 7.34(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.39\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.72$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ (50.32 MHz): $-7.78,10.88,11.00,13.53,13.99,95.97$, 98.69, 113.30, 115.58, 117.45, 118.61, 120.55, 127.18, 128.26, 131.41, 132.77, 134.42, 135.88, 144.83. MS $\left(240^{\circ} \mathrm{C},{ }^{35} \mathrm{Cl},{ }^{28} \mathrm{Si}, m / z\right.$ (\%)): 856 (1.5) [(MePhSi$\left.\left.\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{YCl}\right)_{2}=\mathrm{D}\right]^{+}, 736$ (6) [D-SiMePh] ${ }^{+}, 616$ (28) $\left[\mathrm{D}-\mathrm{SiMePh}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\right]^{+}, 428$ (11) $\left[\mathrm{MePhSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\right.$ $\left.\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{YCl}\right]^{+}, 393(5)\left[\mathrm{MePhSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Y}\right]^{+}, 337$ (100) $\left[\mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{YCl}\right]^{+}, 303$ (29) $\left[\mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)-\right.$ $\left.\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Y}\right]^{+}$and other fragments.
5.4.2. [Bis(μ-chloro)(cyclopentadienyl)(methyl)(phenyl)-(2,3,4,5-tetramethylcyclopenta-dienyl)silylddilanthanum (5b)
This compound was prepared from 1.27 g (4.00 $\mathrm{mmol})$ of $\mathrm{LaCl}_{3}(\mathrm{THF})$ and $1.40 \mathrm{~g}(4.00 \mathrm{mmol})$ of $\mathbf{3 b}$ in 80 ml THF by the method described for $\mathbf{4 b}$ to give a pale yellow solid. Yield $0.31 \mathrm{~g}(16 \%)$ of $\mathbf{5 b}$. Anal. Found: C, 51.72; H, 4.45. $\mathrm{C}_{42} \mathrm{H}_{48} \mathrm{Cl}_{2} \mathrm{La}_{2} \mathrm{Si}_{2}(957.82 \mathrm{~g}$ mol^{-1}) (5b). Calc.: C, 52.67 ; H, $5.05 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 MHz): 0.76 (s, 2H, SiMe), 1.01 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{SiMe}$), 1.59 (m, 8H, THF), 2.14-2.75 (m, 12H, C ${ }_{5} \mathrm{Me}_{4}$), $3.64(\mathrm{~m}, 8 \mathrm{H}$, THF), $6.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.73$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 7.44(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 8.01\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR (50.32 MHz): $0.59,1.36,10.94,11.37$, 13.71, 15.57, $25.36, ~ 64.31, ~ 98.14, ~ 109.88, ~ 114.95$, 116.06, 118.07, 121.48, 122.94, 124.19, 124.91, 128.03, 129.69, 134.94, 140.99, 142.35. MS $\left(240^{\circ} \mathrm{C},{ }^{35} \mathrm{Cl},{ }^{28} \mathrm{Si}\right.$, $m / z \quad(\%)): 956(1.5)\left[\left(\mathrm{MePhSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{LaCl}\right)_{2}=\right.$ $\mathrm{D}]^{+}, 836$ (6) $\left[\mathrm{D}-\mathrm{SiMePh}^{+}, \quad 716\right.$ (28) $[\mathrm{D}-$ $\left.\mathrm{SiMePh}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\right]^{+}, 478$ (11) $\left[\mathrm{MePhSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right.$ $\mathrm{LaCl}]^{+}, 443$ (5) $\left[\mathrm{MePhSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{La}\right]^{+}, 387$ (100) $\left[\mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{LaCl}\right]^{+}, 353$ (29) $\left[\mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\right.$ $\left.\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{La}\right]^{+}$and other fragments.

5.4.3. [Bis(μ-chloro)(cyclopentadienyl)(methyl)(phenyl)-

 (2,3,4,5-tetramethylcyclopentadienyl)silyl]disamarium ($\boldsymbol{6}$)This compound was prepared by using the method described for $\mathbf{4 b}$ from $1.30 \mathrm{~g}(5.04 \mathrm{mmol})$ of SmCl_{3} and $1.77 \mathrm{~g}(5.04 \mathrm{mmol})$ of $\mathbf{3 b}$ in 50 ml THF to yield an orange microcrystalline solid. Yield $0.59 \mathrm{~g}(24 \%)$ of 6b. Anal. Found: C, 51.52; H, 4.96. $\mathrm{C}_{42} \mathrm{H}_{48} \mathrm{Cl}_{2} \mathrm{Si}_{2} \mathrm{Sm}_{2}$
($980.84 \mathrm{~g} \mathrm{~mol}^{-1}$) (6b). Calc.: C, 51.42 ; H, 4.93%. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 MHz): 0.38 (s, 2H, SiMe), 0.58 ($\mathrm{s}, 1 \mathrm{H}$, SiMe), 1.65 (m, 8H, THF), 1.96-2.20 (m, 12H, $\mathrm{C}_{5} \mathrm{Me}_{4}$), $3.68(\mathrm{~m}, 8 \mathrm{H}, \mathrm{THF}), 6.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.91$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 7.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 7.64(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{5}$), $8.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR (50.32 MHz): 1.93, 11.16, 17.99, 18.14, 19.20, 19.81, 94.06, 99.54, 107.96, 108.13, 115.49, 118.26, 120.06, 121.55, 127.40, 128.03, 129.25, 134.03, 134.24, 142.82. MS ($\left.280^{\circ} \mathrm{C},{ }^{35} \mathrm{Cl},{ }^{28} \mathrm{Si},{ }^{152} \mathrm{Sm}, m / z(\%)\right)$: 982 (26) $\left[\left(\mathrm{MePhSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{SmCl}\right)_{2}=\mathrm{D}\right]^{+}, 862$ (8) $[\mathrm{D}-\mathrm{SiMePh}]^{+}, 742$ (1) $\left[\mathrm{D}-\mathrm{SiMePh}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\right]^{+}, 707$ (5) $\left[\mathrm{D}-\mathrm{SiMePh}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)-\mathrm{Cl}\right]^{+}, 643$ (15) $\left[\mathrm{MePhSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\right.$ $\left.\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Sm}_{2} \mathrm{Cl}\right]^{+}, 491 \quad(15) \quad\left[\mathrm{MePhSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right.$ $\mathrm{SmCl}]^{+}, 456$ (15) $\left[\mathrm{MePhSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Sm}\right]^{+}, 399$ (1) $\left[\mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{SmCl}\right]^{+}, 304$ (10) $\left[\mathrm{MePhSi}\left(\mathrm{C}_{5}-\right.\right.$ $\left.\left.\mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]^{+}, 107$ (100) $\left[\mathrm{MeSi}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]^{+}$and other fragments.
5.4.4. [Bis(μ-chloro)(cyclopentadienyl)(methyl)(phenyl)-(2,3,4,5-tetramethylcyclopentadienyl)silyl]dilutetium (7b)
Compound 7b was synthesized in a similar manner to $\mathbf{4 b}$ from $1.01 \mathrm{~g}(3.59 \mathrm{mmol})$ of LuCl_{3} and 1.26 g (3.59 mmol) of $\mathbf{3 b}$ in 70 ml THF to obtain a colorless solid. Yield $0.41 \mathrm{~g}(22 \%)$ of 7b. Anal. Found: C, 48.12; $\mathrm{H}, 4.25 . \mathrm{C}_{42} \mathrm{H}_{48} \mathrm{Cl}_{2} \mathrm{Lu}_{2} \mathrm{Si}_{2}$ ($1029.96 \mathrm{~g} \mathrm{~mol}^{-1}$) (7b). Calc.: C, 48.99 ; H, 4.70%. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 MHz): 1.00 (s, $3 \mathrm{H}, \mathrm{SiMe}$), 1.11 (t, $3 \mathrm{H}, \mathrm{Et}_{2} \mathrm{O}$), 1.59 (m, 4 H , THF), 1.62 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}$), 1.96 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}$), 2.13 (s, $3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}$), 2.21 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}$), 3.33 (q, 4 H , $\left.\mathrm{Et}_{2} \mathrm{O}\right), 3.63(\mathrm{~m}, 4 \mathrm{H}, \mathrm{THF}), 6.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.39$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.80(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 7.40\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.18$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR (50.32 MHz): 0.35, 10.81, 11.58, 14.19, 15.05, 25.35, 67.39, 101.60, 109.27, 111.20, 112.10, 112.32, 112.76, 117.74, 118.01, 118.48, $119.46,128.26,129.39,134.33,139.26$. MS $\left(210^{\circ} \mathrm{C}\right.$, $\left.{ }^{35} \mathrm{Cl}, \quad{ }^{28} \mathrm{Si}, \quad m / z \quad(\%)\right): \quad 1028 \quad$ (38) $\quad\left[\left(\mathrm{MePhSi}\left(\mathrm{C}_{5}-\right.\right.\right.$ $\left.\left.\left.\mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{LuCl}\right)_{2}=\mathrm{D}\right]^{+}, 908(17)\left[\mathrm{D}-\mathrm{SiMePh}^{+}, 788\right.$ (35) $\left[\mathrm{D}-\mathrm{SiMePh}-\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\right]^{+}, 514$ (84) $\left[\mathrm{MePhSi}\left(\mathrm{C}_{5}{ }^{-}\right.\right.$ $\left.\left.\mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{LuCl}\right]^{+}, 479$ (74) $\left[\mathrm{MePhSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5}{ }^{-}\right.\right.$ $\left.\left.\mathrm{H}_{4}\right) \mathrm{Lu}\right]^{+}, 422$ (71) $\left[\mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{LuCl}\right]^{+}, 387$ (10) $\left[\mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Lu}\right]^{+}, \quad 395 \quad(22) \quad\left[\mathrm{MePhSi}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right.$ $\mathrm{LuCl}]^{+}, 335(38)\left[\mathrm{PhSi}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Lu}\right]^{+}$, 185 (100) $[\mathrm{MePh}-$ $\left.\mathrm{Si}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]^{+}$and other fragments.

5.4.5. [(Cyclopentadienyl)(methyl)(phenyl)(2,3,4,5tetramethylcyclopentadienyl)silyl]zirconiumdichloride ($\mathbf{8 b}$)

$\mathrm{ZrCl}_{4}(2.06 \mathrm{~g}, 8.85 \mathrm{mmol})$ was dissolved carefully in 70 ml of THF, and $3.10 \mathrm{~g}(8.85 \mathrm{mmol})$ of $\mathbf{3 b}$ were added. The suspension was stirred for 96 h at room temperature, the solvent was removed under reduced pressure and the remaining pale brown residue first was washed with 20 ml of $\mathrm{Et}_{2} \mathrm{O}$ and then extracted two times with 40 ml of $\mathrm{Et}_{2} \mathrm{O}$. The yellow extracts were
reduced in vacuo to 25 ml , and the solvent was cooled to $-78^{\circ} \mathrm{C}$ to give a pale yellow solid, which was separated by decanting and subsequent drying of the solid in vacuo. The remaining product was recrystallized from $\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}$ (10:1) to obtain a pale yellow microcrystalline solid, which was dried in vacuo at 0.1 mbar. Yield $1.49 \mathrm{~g}(36 \%)$ of $\mathbf{8 b}$. M.p.(sealed): $163^{\circ} \mathrm{C}$. Anal. Found: C, 54.17; H, 5.47. $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{SiZr}$ (466.78 g mol^{-1}) (8b). Calc.: C, 54.05 ; H, 5.18%. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 MHz): 0.91 (s, $3 \mathrm{H}, \mathrm{SiMe}$), 1.45 (s, $3 \mathrm{H} ; \mathrm{C}_{5} \mathrm{Me}_{4}$), 1.98 (s , $3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}$), 2.01 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}$), 2.09 (s, $3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}$), $5.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 7.14(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.96\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR (50.32 MHz): $-0.35,12.04,12.49$, $15.09,15.30$, 97.60 , 105.65, 112.97, 115.00, 125.27, 125.50, 128.19, 129.13, 129.22, 130.88, 134.29, 134.81, 137.33, 142.21. MS $\left(25^{\circ} \mathrm{C},{ }^{35} \mathrm{Cl},{ }^{90} \mathrm{Zr},{ }^{28} \mathrm{Si}, m / z(\%)\right): 464$ (49) $\left[\mathrm{MePhSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{ZrCl}_{2}\right]^{+}, \quad 429$ (100) $\left[\mathrm{MePhSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{ZrCl}\right]^{+}, 414$ (17) $\left[\mathrm{PhSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)-\right.$ $\mathrm{ZrCl}]^{+}, 400$ (4) $\left[\mathrm{MePhSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right) \mathrm{ZrCl}_{2}\right]^{+}$, 394 (7) [Me$\left.\mathrm{PhSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Zr}\right]^{+}, 379$ (6) $\left[\mathrm{PhSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)-\right.$ $\mathrm{Zr}]^{+}, \quad 344$ (2) $\left[\mathrm{MePhSi}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{ZrCl}_{2}\right]^{+}, 330$ (3) $\left[\mathrm{MePhSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right) \mathrm{Zr}\right]^{+}, 317$ (2) $\left[\mathrm{MeSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)-\right.$
 ments.
5.5. Syntheses of organolanthanide acetates with ethyl, methyl substitution at the bridging silicon atom
5.5.1. [(Cyclopentadienyl)(ethyl)(methyl)(2,3,4,5-tetramethylcyclopentadienyl)silyllyttriumacetate (9a)
A 50 ml Schlenk flask was charged with $0.30 \mathrm{~g}(0.39$ $\mathrm{mmol})$ of $\mathbf{4 a}$ and $0.07 \mathrm{~g}(0.79 \mathrm{mmol})$ of sodium acetate. 35 ml of THF were added and the reaction mixture was stirred for 48 h at room temperature. The THF was removed in vacuo, and the product was separated by soxhlet extraction with $\mathrm{Et}_{2} \mathrm{O}$. The extract was reduced in vacuo to 25 ml and cooled to $-30^{\circ} \mathrm{C}$ to give a colourless microcrystalline solid. The product was isolated by decantation and dried in vacuo at 0.1 mbar . Yield $0.25 \mathrm{~g}(78 \%)$ of 9 a . Anal. Found: C, 56.42 ; H, 6.94. $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{SiY}\left(404.43 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ (9a). Calc.: C, 56.43 ; H, 6.73%. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 MHz): 0.90 (s, 3H, SiMe), $1.33\left(\mathrm{~m}, ~ 3 \mathrm{H}, \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 1.57(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 1.85\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}\right), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{O}_{2} \mathrm{CCH}_{3}\right)$, $2.37,2.38\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}\right), 6.30\left(\mathrm{br} \mathrm{m}, 4 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR (50.32 MHz): - 2.45, 7.41, 8.07, 10.51, $13.99,14.32,23.94,103.29,104.02,107.08,112.78$, 113.19, 119.66, 121.51, 122.04, 122.62, 180.61. MS $\left(305^{\circ} \mathrm{C},{ }^{28} \mathrm{Si}, \mathrm{m} / \mathrm{z}(\%)\right): 808$ (33) $\left[\left(\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\right.\right.$ $\left.\left.\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{YO}_{2} \mathrm{CCH}_{3}\right)_{2}=\mathrm{D}\right]^{+}, 779$ (1) $[\mathrm{D}-\mathrm{Et}]^{+}, 736$ (1) [D $-\mathrm{SiMeEt}^{+}, 404$ (100) $\quad\left[\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{YO}_{2}\right.$ $\left.\mathrm{CCH}_{3}\right]^{+}, 375$ (13) $\left[\mathrm{MeSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{YO}_{2} \mathrm{CCH}_{3}\right]^{+}$, 345 (8) $\left[\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Y}\right]^{+}, 339$ (19) $[\mathrm{MeEtSi}-$ $\left.\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right) \mathrm{YO}_{2} \mathrm{CCH}_{3}\right]^{+}, 316$ (9) $\left[\mathrm{MeSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)-\right.$
$\mathrm{Y}]^{+}, 258$ (4) $\left[\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]^{+}$and other fragments.

5.5.2. [(Cyclopentadienyl)(ethyl)(methyl)(2,3,4,5-tetramethylcyclopentadienyl)silylllanthanumacetate (10a)

Compound 10a was prepared from $0.69 \mathrm{~g}(0.80$ $\mathrm{mmol})$ of 5 a und $0.13 \mathrm{~g}(1.60 \mathrm{mmol})$ of sodium acetate in 35 ml THF by the same method described for 9 a to give a cream-coloured solid. Yield $0.64 \mathrm{~g}(88 \%)$ of $\mathbf{1 0 a}$. Anal. Found: C, 49.54; H, 5.15. $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{LaO}_{2} \mathrm{Si}(454.43$ $\mathrm{g} \mathrm{mol}^{-1}$) (10a). Calc.: C, $50.22 ; \mathrm{H}, 5.99 \%{ }^{1}{ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 MHz): 0.94 (s, 3H, SiMe), 1.35 (m, 5H, SEt), 2.01 (br s, $9 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}$), $2.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}\right.$), $2.61(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{Me}_{4}\right), 6.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR (50.32 MHz): - $1.82,7.74,8.83,11.38$, $14.25,14.56,15.18,25.01,65.43,102.37,108.22,114.31$, 114.57, 115.05, 121.12, 121.33, 121.53, 122.18, 131.33, 182.17. MS $\left(280^{\circ} \mathrm{C},{ }^{28} \mathrm{Si}, \quad m / z \quad(\%)\right): 908$ (32) $\left[\left(\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{LaO}_{2} \mathrm{CCH}_{3}\right)_{2}=\mathrm{D}\right]^{+}, 836$ (2) $[\mathrm{D}-$ $\mathrm{SiMeEt}^{+}, 454$ (36) $\quad\left[\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{LaO}_{2}{ }^{-}\right.$ $\left.\mathrm{CCH}_{3}\right]^{+}, 425(100)\left[\mathrm{MeSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{LaO}_{2} \mathrm{CCH}_{3}\right]^{+}$, 395 (53) $\left[\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{La}\right]^{+}, 258$ (27) [MeEtSi$\left.\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]^{+}$and other fragments.
5.5.3. [(Cyclopentadienyl)(ethyl)(methyl)(2,3,4,5-tetramethylcyclopentadienyl)silyl]samariumacetate (11a)
The procedure described above for the synthesis of $9 \mathbf{a}$ was repeated with $0.36 \mathrm{~g}(0.41 \mathrm{mmol})$ of $\mathbf{6 a}$ and 0.07 $\mathrm{g}(0.82 \mathrm{mmol})$ of sodium acetate in 35 ml of THF to yield an intensive yellow microcrystalline solid. Yield $0.31 \mathrm{~g}(81 \%)$ of 11a. Anal. Found: C, 47.99 ; H, 5.81. $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{SiSm}\left(465.94 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ (11a). Calc.: C, 48.90 ; $\mathrm{H}, 5.84 \%$. Molecular mass (kryoscopic): $502 \mathrm{~g} \mathrm{~mol}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 MHz): 0.39-0.58 (m, 8H, SiMe, SiEt), $0.90,0.94,1.01,1.62$ ($\mathrm{s}, 12 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}$), 3.13 (br s, 3 H , $\mathrm{O}_{2} \mathrm{CCH}_{3}$), $7.05\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 9.72$ (s br, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), 12.29 (s, $1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR (100.64 MHz): -0.78 , $7.03,9.97,15.04,15.42,17.50,17.60,21.86$, 93.77, 104.49, 105.30, 107.85, 108.44, 110.94, 111.59, 114.86, 115.79, 116.56, 183.47. MS $\left(220^{\circ} \mathrm{C},{ }^{28} \mathrm{Si},{ }^{152} \mathrm{Sm}\right.$, $m / z \quad(\%)): 934$ (24) $\quad\left[\left(\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{SmO}_{2}-\right.\right.$ $\left.\left.\mathrm{CCH}_{3}\right)_{2}=\mathrm{D}\right]^{+}, 890$ (2) $[\mathrm{D}-\mathrm{Me}-\mathrm{Et}]^{+}$, 862 (2) [D$\mathrm{SiMeEt}]^{+}, 678$ (6) $\left[\mathrm{D}-\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right) \mathrm{SiMeEt}\right]^{+}, 467$ (100) $\left[\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)-\mathrm{SmO}_{2} \mathrm{CCH}_{3}\right]^{+}, 408$ (96) $\left[\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Sm}\right]^{+}, 379$ (18) $\left[\mathrm{MeSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)-\right.$ $\left.\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)-\mathrm{Sm}\right]^{+}, 258$ (23) $\left[\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]^{+}$and other fragments.
5.5.4. [(Cyclopentadienyl)(ethyl)(methyl)(2,3,4,5-tetramethylcyclopentadienyl)silyl]lutetiumacetate (12a)

Compound 12a was prepared analogously to $\mathbf{9 a}$ from $0.51 \mathrm{~g}(0.55 \mathrm{mmol})$ of $7 \mathbf{a}$ and $0.09 \mathrm{~g}(1.10 \mathrm{mmol})$ of sodium acetate in 40 ml of THF to give a colourless microcrystalline solid. Yield $0.47 \mathrm{~g}(88 \%)$ 12a. Anal. Found: C, 45.47 ; H, 5.28. $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{LuO}_{2} \mathrm{Si}(490.50 \mathrm{~g}$
mol^{-1}) (12a). Calc.: C, 46.53; H, 5.55\%. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 $\mathrm{MHz}): 0.88(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiMe}), 1.38(\mathrm{~m}, 5 \mathrm{H}, \mathrm{SiEt}), 1.86(\mathrm{~s}$, $6 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}$), $2.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}\right), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}\right)$, $2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{O}_{2} \mathrm{CCH}_{3}\right), 6.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.31(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{H}_{4}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR (50.32 MHz): - 2.50, 7.27, 8.14, 10.59, 14.07, 14.96, 24.49, 103.36, 104.00, 107.07, $112.13,113.39,113.82,114.08,118.14,119.49,120.84$, 183.63. MS $\left(260^{\circ} \mathrm{C},{ }^{28} \mathrm{Si}, m / z(\%)\right)$: 980 (36) [(MeEt$\left.\left.\mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{LuO}_{2} \mathrm{CCH}_{3}\right)_{2}=\mathrm{D}\right]^{+}$, $490(100)[\mathrm{MeEtSi}-$ $\left.\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{LuO}_{2} \mathrm{C}_{-\mathrm{CH}_{3}}\right]^{+}, 461$ (16) $\left[\mathrm{MeSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)-\right.$ $\left.\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{LuO}_{2} \mathrm{CCH}_{3}\right]^{+}, 431$ (5) $\left[\mathrm{MeEtSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)-\right.$ $\mathrm{Lu}]^{+}, 418(11)\left[\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{LuO}_{2} \mathrm{CCH}_{3}\right]^{+}$and other fragments.

5.6. Syntheses of organolanthanide acetates with

 methyl, phenyl substitution at the bridging silicon atom
5.6.1. [(Cyclopentadienyl)(methyl)(phenyl)(2,3,4,5-

 tetramethylcyclopentadienyl)silyl]yttriumacetate (9b)Compound $9 \mathbf{9 b}$ was synthesized in a similar manner as described for $9 \mathbf{a}$ from $0.56 \mathrm{~g}(0.65 \mathrm{mmol})$ of $\mathbf{4 b}$ and 0.11 $\mathrm{g}(1.30 \mathrm{mmol})$ of sodium acetate in 40 ml of THF to obtain a colourless solid. Yield $0.54 \mathrm{~g}(92 \%)$ of $9 \mathbf{9 b}$. Anal. Found: C, 60.69; H, 5.85. $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{SiY}$ (452.48 g mol^{-1}) (9b). Calc.: C, 61.06; H, 6.01\%. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\mathrm{MHz}): 0.26(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiMe}), 1.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}\right), 1.71(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}$), $1.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}\right), 1.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}\right)$, $2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{O}_{2} \mathrm{CCH}_{3}\right), 6.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 7.40(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 7.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(50.32 \mathrm{MHz}): 5.29,10.80,10.90,14.15$, $14.98,26.53,106.59,120.19,122.07,125.20,127.77$, $128.35,129.45,132.86,133.81,136.26,143.54,179.51$. MS $\quad\left(288^{\circ} \mathrm{C},{ }^{28} \mathrm{Si}, \quad m / z \quad(\%)\right): 904$ (1) $\quad[(\mathrm{Me}-$ $\left.\left.\mathrm{PhSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{YO}_{2} \mathrm{CCH}_{3}\right)_{2}=\mathrm{D}\right]^{+}$, 812 (6) $[\mathrm{D}-\mathrm{Me}-$ $\mathrm{Ph}]^{+}, 784$ (2) $\left[\mathrm{D}-\mathrm{SiMePh}^{+}, 692\right.$ (2) $[\mathrm{D}-\mathrm{Me}-\mathrm{Ph}-$ $\left.\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\right]^{+}, 664$ (8) $\left[\mathrm{D}-\mathrm{SiMePh}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\right]^{+}, 452$ (16) $\left[\mathrm{MePhSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{YO}_{2} \mathrm{CCH}_{3}\right]^{+}, 393(48)[\mathrm{MePhSi}-$ $\left.\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Y}\right]^{+}, 375$ (44) $\left[\mathrm{MeSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)-\right.$ $\left.\mathrm{YO}_{2} \mathrm{CCH}_{3}\right]^{+}$, 315 (100) $\left[\mathrm{MeSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Y}-\mathrm{H}\right]^{+}$, 303 (28) $\left[\mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Y}\right]^{+}, 255(29)\left[\mathrm{MeSi}-\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)-\right.$ $\left.\mathrm{YO}_{2} \mathrm{CCH}_{3}\right]^{+}$and other fragments.

5.6.2. [(Cyclopentadienyl)(methyl)(phenyl)(2,3,4,5-

 tetramethylcyclopentadienyl)silylllanthanumacetate (10b)Compound 10b was prepared by using the same method as described for 9 a from $0.46 \mathrm{~g}(0.48 \mathrm{mmol})$ of $\mathbf{5 b}$ and $0.08 \mathrm{~g}(0.96 \mathrm{mmol})$ of sodium acetate in 40 ml of THF to give a cream-coloured solid. Yield $0.45 \mathrm{~g}(94 \%)$ of 10b. Anal. Found: C, $55.47 ; \mathrm{H}, 5.34 . \mathrm{C}_{23} \mathrm{H}_{27} \mathrm{LaO}_{2} \mathrm{Si}$ ($502.48 \mathrm{~g} \mathrm{~mol}^{-1}$) (10b). Calc.: C, $54.98 ; \mathrm{H}, 5.42 \%$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}): 0.32$ (s, $3 \mathrm{H}, \mathrm{SiMe}$), $1.70-1.85$ (m, $12 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}$), 1.92 (br s, $3 \mathrm{H}, \mathrm{O}_{2} \mathrm{CCH}_{3}$), $6.43(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 6.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.73$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 7.36\left(\mathrm{~m}, 1 \mathrm{H} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $7.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR (50.32 MHz): 1.53, $10.91,14.06,15.15,25.43,99.97,105.21,107.62,112.50$,
113.88, 116.04, 127.03, 127.68, 133.87, 143.87, 182.32. MS $\left(240^{\circ} \mathrm{C},{ }^{28} \mathrm{Si}, m / z(\%)\right): 1004$ (2) $\left[\left(\mathrm{MePhSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)-\right.\right.$ $\left.\left.\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{LaO}_{2} \mathrm{CCH}_{3}\right)_{2}=\mathrm{D}\right]^{+}, \quad 820$ (6) $\quad\left[\mathrm{D}-\mathrm{MePhSi}\left(\mathrm{C}_{5}{ }^{-}\right.\right.$ $\left.\left.\mathrm{H}_{4}\right)\right]^{+}, 764$ (5) $\left[\mathrm{D}-\operatorname{SiMePh}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\right]^{+}$, 502 (17) [MePh$\left.\mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)-\mathrm{LaO}_{2} \mathrm{CCH}_{3}\right]^{+}, 443$ (41) $\left[\mathrm{MePhSi}\left(\mathrm{C}_{5}-\right.\right.$ $\left.\left.\mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{La}\right]^{+}$, 351 (2) $\left[\mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{La}\right]^{+}, 185$ (100) $\left[\mathrm{MePhSi}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}$and other fragments.
5.6.3. [(Cyclopentadienyl)(methyl)(phenyl)(2,3,4,5tetramethylcyclopentadienyl)silyl]samariumacetate (11b)

The procedure described for 9 a was performed with $0.37 \mathrm{~g}(0.38 \mathrm{mmol})$ of $\mathbf{6 b}$ and $0.07 \mathrm{~g}(0.76 \mathrm{mmol})$ of sodium acetate in 40 ml of THF to obtain an intensive yellow microcrystalline solid. Yield $0.31 \mathrm{~g}(79 \%)$ of $\mathbf{1 1 b}$. Anal. Found: C, 52.97; H, 4.95. $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{SiSm}$ (513.99 $\mathrm{g} \mathrm{mol}^{-1}$) (11b). Calc.: C, 53.76; H, 5.30\%. Molecular mass (kryoscopic): $589 \mathrm{~g} \mathrm{~mol}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}$): 0.51 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SiMe}$), 0.92 (br s, $6 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}$), 1.56 (s br , $3 \mathrm{H}, \mathrm{O}_{2} \mathrm{CCH}_{3}$), $2.35\left(\mathrm{~s} \mathrm{br}, 6 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}\right), 6.78(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 7.51\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 7.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.90$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.43\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ (50.32 MHz): 2.53, 14.00, 14.05, 17.81, 19.12, 21.38, $92.98,102.40,107.40,110.20,114.19,116.23,128.04$, 128.91, 134.20, 143.63, 181.92. MS $\left(288^{\circ} \mathrm{C},{ }^{28} \mathrm{Si},{ }^{152} \mathrm{Sm}\right.$, $m / z \quad(\%)): \quad 1030 \quad(59) \quad\left[\left(\mathrm{MePhSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Sm}-\right.\right.$ $\left.\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}=\mathrm{D}^{+}, 910$ (19) [D-SiMePh] ${ }^{+}$, 846 (39) [D$\left.\operatorname{MePhSi}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]^{+}, 790$ (19) $\left[\mathrm{D}-\mathrm{SiMePh}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\right]^{+}, 726$ (11) $\left[\mathrm{D}-\mathrm{MePhSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)-\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right]^{+}, 515$ (76) $[\mathrm{MePhSi}-$ $\left.\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{SmO}_{2} \mathrm{CCH}_{3}\right]^{+}, 456$ (100) $\left[\mathrm{MePhSi}\left(\mathrm{C}_{5}{ }^{-}\right.\right.$ $\left.\left.\mathrm{Me}_{4}\right)-\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Sm}\right]^{+}, 438(13)\left[\mathrm{MeSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{SmO}_{2^{-}}\right.$ $\left.\mathrm{CCH}_{3}\right]^{+}, 379(14)\left[\mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)-\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Sm}\right]^{+}$and other fragments.
5.6.4. [(Cyclopentadienyl)(methyl)(phenyl)(2,3,4,5tetramethylcyclopentadienyl)silyl]lutetiumacetate (12b)

The preceding synthesis for 9 a was carried out with $0.35 \mathrm{~g}(0.34 \mathrm{mmol})$ of $7 \mathbf{b}$ and $0.06 \mathrm{~g}(0.68 \mathrm{mmol})$ of sodium acetate in 40 ml of THF to yield a colourless microcrystalline solid. Yield $0.34 \mathrm{~g}(92 \%)$ of $\mathbf{1 2 b}$. Anal. Found: C, 50.71; H, 5.25. $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{LuO}_{2} \mathrm{Si}$ (538.55 g mol^{-1}) (12b). Calc.: C, 51.30; H, 5.05\%. Molecular mass (kryoscopic): $554 \mathrm{~g} \mathrm{~mol}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}$): $0.40(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiMe}), 1.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}\right), 1.72(\mathrm{~m}, 4 \mathrm{H}$, THF), $1.82\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{4}\right), 1.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 2.21(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{O}_{2} \mathrm{CCH}_{3}\right), 3.65(\mathrm{~m}, 4 \mathrm{H}, \mathrm{THF}), 6.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$, $6.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 7.29\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.87(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(50.32 \mathrm{MHz}):-6.30, ~ 11.11$, $14.44,14.61,24.47,25.42,67.45,104.07,105.27,107.65$, $108.62,113.54,113.90,121.08,126.98,127.53,133.24$, 134.49, 143.03, 184.99. MS $\left(200^{\circ} \mathrm{C},{ }^{28} \mathrm{Si}, m / z(\%)\right): 1076$ (3) $\left[\left(\mathrm{MePhSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{LuO}_{2} \mathrm{CCH}_{3}\right)_{2}=\mathrm{D}\right]^{+}$, 956 (2) $[\mathrm{D}-\mathrm{SiMePh}]^{+}, 892$ (3) $\left[\mathrm{D}-\mathrm{Me}-\mathrm{Ph}-\mathrm{C}_{5} \mathrm{H}_{4}\right]^{+}, 836$ (5) $\left[\mathrm{D}-\mathrm{SiMePh}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\right]^{+}, 538$ (10) $\left[\mathrm{MePhSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5}-\right.\right.$ $\left.\left.\mathrm{H}_{4}\right) \mathrm{LuO}_{2} \mathrm{CCH}_{3}\right]^{+}$, 479 (33) $\left[\mathrm{MePhSi}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)-\right.$ $\mathrm{Lu}]^{+}, 387$ (12) $\left[\mathrm{Si}\left(\mathrm{C}_{5} \mathrm{Me}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Lu}\right]^{+}, 185$ (100) [Me$\left.\mathrm{PhSi}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}$and other fragments.
5.7. X-ray crystallographic analyses

An Enraf Nonius CAD-4 automatic diffractometer ($\omega-2 \theta$ scan, $\lambda=0.71096 \AA$, variable scan time 45 s) fitted with a liquid nitrogen low-temperature device was used for the intensity measurements. The unit cell parameters were obtained from the angles of 25 reflections in the range of $18.6^{\circ}<2 \theta<28.0^{\circ}$ for $\mathbf{6 a}$ and $18.8^{\circ}<2 \theta<29.8^{\circ}$ for 8a. Reflections were scanned with variable scan time, depending on intensities, with $2 / 3$ of the time used for scanning the peak and $1 / 6$ measuring each the left and the right background. The intensities of three check reflections monitored every 2 h showed only statistical fluctuations during the data collection. The orientation of the crystal was checked every 200 intensity measurements by scanning three strong reflections well distributed in reciprocal space. A new orientation matrix would have automatically been calculated from a list of 25 recentered reflections, if the angular change was larger than 0.1%. The raw data were corrected for Lorentz, polarisation and absorption effects [32]. The positions of the heavy atoms were determined from a Patterson synthesis (SHELXS-86) [33]. Structure solution and refinement was carried out with the SHELXS-86 [33] and SHELXL-93 [34] software respectively. The non-hydrogen atoms were refined with anisotropic temperature factors. The $\mathrm{C}-\mathrm{H}$ hydrogen atoms were calculated in idealized positions ($\mathrm{C}-\mathrm{H}=0.96 \AA, U_{\text {iso }}=0.08 \AA^{2}$). Scattering factors were taken from references [35-37]. The non-hydrogen atoms of the solvent molecules were refined with isotropic temperature factors. Data reduction was performed using PC-software [32]. All other calculations were performed with SHELXL-93 [34]. Molecular plots were obtained with the program ZORTEP [19]. 6a: During the refinement of the structure the terminal atom of the ethyl substituent was found to be disordered racemically between the positions $\mathrm{C}(11)$ and $\mathrm{C}\left(11^{\prime}\right)$. 8a: The normalized structure amplitudes indicated the space group $\operatorname{Pbn} 2_{1}$ (No. 33, non standard orientation). After structure refinement the absolute structure could not be determined. The ethyl and methyl substituents at the silicon atom are racemically distributed (50:50). Therefore the structure was transferred to the centrosymmetric space group Pnma (No. 62) and refined with a disordered atom C(7). Further details of the crystal structure investigation are available on request from the Fachinformationszentrum Karlsruhe GmbH, D-76344 Eggenstein-Leopoldshafen (FRG), on quoting the depository numbers CSD407288 (6a) and CSD-407287 (8a).

5.8. Catalysis tests

All procedures were carried out under argon using Schlenk techniques. MAO was purchased from Witco,
propylene from Gerling, Holz and Co. and ethylene from Linde. The gases were purified by passage through columns with Cu catalyst (BASF R3-11) and a molecular sieve of $10 \AA$. Toluene was refluxed over Na / K for several days prior to use. Polymerizations were performed in a 11 type I Büchi autoclave with an additional internal cooling loop. For a typical experiment the reactor was evacuated at $95^{\circ} \mathrm{C}$ for 1 h , flushed several times with argon and filled with 200 ml of toluene and 400 mg of MAO. Propylene or ethylene pressure of 2 bar was applied and the polymerization started by injection of the metallocene. Monomer consumption was monitored with a Peteric 3002 pressflow controller and a Büchi bds 488 data system. The polymerization was terminated by injection of 5 ml ethanol and venting off the monomer. Polyethylenes were stirred with ethanol $/ \mathrm{HCl}$ overnight and filtered, washed with NaHCO_{3} and water. The polypropylene solutions were stirred with aqueous HCl followed by phase separation, neutralization, washing and removal of toluene on a rotatory evaporator. The polymer yields were determined after drying for 48 h at $60^{\circ} \mathrm{C}$ in vacuo.

5.9. Polymer analyses

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectra were recorded at 373 K on a Bruker MSL 300 spectrometer at 75 MHz . Samples were prepared in 10 mm tubes as $10 \mathrm{wt} . \%$ solutions of the polymer in perchlorobutadiene/tetrachloroethaned_{2}. DSC-analyses were carried out on a Perkin-Elmer DSC 4 with a heating rate of $20^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$. The results of the second scan are reported. Gel permeation chromatography was performed on a Waters $150-\mathrm{C}$ instrument $\left(135^{\circ} \mathrm{C} /\right.$ trichlorobenzene) equipped with a PL 360 evaporation light scattering detector. Viscosimetry was carried out in decahydronaphthalene at $135^{\circ} \mathrm{C}$ using a Ubbelohde capillary 0a and a Lauda viscoboy. MarkHouwink constants were taken from literature [38].

Acknowledgements

This work was financially supported by the Fonds der Chemischen Industrie, the Deutsche Forschungsgemeinschaft (Graduiertenkolleg 'Synthetische, mechanistische und reaktionstechnische Aspekte von Metallkatalysatoren') and the Bundesminister für Bildung, Wissenschaft, Forschungs und Technologie (BMBF 03D 0023 D 3).

References

[1] G.A. Molander, E.D. Dowdy, H. Schumann, J. Org. Chem. 63 (1998) 3386.
[2] C.S. Bajgur, W.R. Tikkanen, J.L. Petersen, Inorg. Chem. 24 (1985) 2539.
[3] P. Jutzi, R. Dickbreder, Chem. Ber. 119 (1986) 1750.
[4] G. Jeske, L.E. Schock, P.N. Swepston, H. Schumann, T.J. Marks, J. Am. Chem. Soc. 107 (1985) 8103.
[5] N. Höck, W. Oroschin, G. Poalucci, R.D. Fischer, Angew. Chem. 98 (1986) 748.
[6] C.M. Fendrick, L.D. Schertz, V.M. Day, T.J. Marks, Organometallics 7 (1988) 1828.
[7] D. Stern, M. Sabat, T.J. Marks, J. Am. Chem. Soc. 112 (1990) 9558.
[8] W.E. Piers, P.J. Shapiro, E.E. Bunel, J.E. Bercaw, Synlett 2 (1990) 74.
[9] T. Akhnoukh, J. Müller, K. Qiao, X.-F. Li, R.D. Fischer, J. Organomet. Chem. 408 (1991) 47.
[10] K. Qiao, R.D. Fischer, G. Paolucci, J. Organomet. Chem. 456 (1993) 185.
[11] E.B. Coughlin, L.M. Henling, J.E. Bercaw, Inorg. Chim. Acta 242 (1996) 205.
[12] S. Miya, T. Yoshimura, T. Mise, H. Yamazaki (Chisso Corp.; Institute of Physical and Chemical Research), EP 316,155 (1989), JP 282,538 (1987).
[13] S. Miya, T. Mise, A. Kageyama, H. Yamazaki (Chisso Corp. Rikagaku Kenkyusho), JP 05,202,124 [93,202,124] (1993).
[14] For some examples see: (a) J.A. Ewen, Stud. Surf. Sci. Cat. 25 (1986) 271. (b) H. Wiesenfeldt, A. Reinmuth, E. Barsties, K. Evertz, H.-H. Brintzinger, J. Organomet. Chem. 369 (1989) 359. (c) T. Mise, S. Miya, H. Yamazaki, Chem. Lett. (1989) 1853. (d) W. Röll, H.-H. Brintzinger, B. Rieger, R. Zolk, Angew. Chem. 102 (1990) 339. (e) P. Burger, K. Hortmann, J. Diebold, H.-H. Brintzinger, J. Organomet. Chem. 417 (1991) 9. (f) K. Hortmann, H.-H. Brintzinger, New J. Chem. 16 (1992) 51.
[15] For some examples see: (a) R.E. Marsh, W.P. Schaefer, E.B. Coughlin, J.E. Bercaw, Acta Cryst. C48 (1992) 1773. (b) E.B. Coughlin, J.E. Bercaw, J. Am. Chem. Soc. 114 (1992) 7606. (c) H. Schumann, M. Glanz, H. Hemling, Chem. Ber. 127 (1994) 2363.
[16] H. Köpf, N. Klouras, Z. Naturforsch. 38B (1983) 321.
[17] See for example: (a) G.H. Llinas, R.O. Day, M.D. Rausch, J.C.W. Chien, Organometallics 12 (1993) 1283. (b) G. Erker, C. Psiorz, C. Krüger, M. Nolte, Chem. Ber. 127 (1994) 1551.
[18] The data could be refined only to $R_{1}=0.1246$. K. Zietzke, Diss., TU Berlin, 1997.
[19] L. Zsolnai, H. Pritzkow, ZORTEP, Ortep Program for PC, Universität Heidelberg, Deutschland, 1994.
[20] W.J. Evans, R.A. Keyer, J.W. Ziller, J. Organomet. Chem. 450 (1993) 115.
[21] C. Sun, G. Wei, Z. Jin, W. Chen, Polyhedron 13 (1994) 1483.
[22] W.J. Evans, J.W. Grate, K.R. Levan, I. Bloom, T.T. Petersen, R.I. Dvedens, H. Zhang, J.L. Atwood, Inorg. Chem. 25 (1986) 3614.
[23] H. Schumann, L. Esser, J. Löbel, A. Diedrich, D. van der Helm, X. Ji, Organometallics 10 (1991) 2585.
[24] W.J. Evans, I. Bloom, W.E. Hunter, J.L. Atwood, J. Am. Chem. Soc. 103 (1981) 6507.
[25] M.A. Giardello, V.P. Conticello, L. Brard, M.R. Gagné, T.J. Marks, J. Am. Chem. Soc. 116 (1994) 10212.
[26] G. Depaoli, P. Zanonato, G. Valle, Inorg. Chim. Acta 170 (1990) 109.
[27] J.W. Lauher, R. Hoffmann, J. Am. Chem. Soc. 98 (1976) 1729.
[28] L. Resconi, F. Piemontesi, G. Franciscono, L. Abis, T. Fiorani, J. Am. Chem. Soc. 114 (1992) 1025.
[29] H. Schumann, M. Glanz, H. Hemling, J. Organomet. Chem. 445 (1993) 1.
[30] J.J. Eisch, R.B. King, Organometallic Syntheses, New York, 1965, p. 64.
[31] W.A. Herrmann, G. Brauer, Synthetic Methods of Organometallic and Inorganic Chemistry, vol. 6, Thieme Verlag, Stuttgart, New York, 1997.
[32] Kretschmar, CAD-4/PC-Version, 1994.
[33] G.M. Sheldrick, SHELXL 86, Program for Crystal Structure Determination, Universität Göttingen, Deutschland, 1986.
[34] G.M. Sheldrick, SHELXS 93, Program for Crystal Structure Determination, Universität Göttingen, Deutschland, 1993.
[35] D.T. Cromer, J.B. Mann, Acta Crystallogr. A24 (1968) 321.
[36] D.T. Cromer, D. Liberman, J. Chem. Phys. 53 (1970) 1891.
[37] R.F. Stewart, E.R. Davidson, W.T. Simpson, J. Chem. Phys. 42 (1965) 3175.
[38] T.G. Scholte, N.L.J. Meijerink, H.M. Schoffeleers, A.M.G. Brands, J. Appl. Pol. Sci. 29 (1984) 3763.

[^0]: * Corresponding author. Tel.: +49 30 31423984; fax: +49 30 31422168; e-mail: Schumann@chem.zrz.tu-berlin.de
 ${ }^{1}$ Part 125 of the series Organometallic Compounds of the Lanthanides. For Part 124 see Ref. [1]. Dedicated to Professor Dr Peter Jutzi on the occasion of his 60th birthday with gratitude.

[^1]: ${ }^{\text {a }} R_{1}=\Sigma\left(\left|F_{\mathrm{o}}\right|-\mid F_{\mathrm{c}}\right) / \Sigma\left|F_{\mathrm{o}}\right|$.
 ${ }^{\mathrm{b}} w R_{2}=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\mid F_{\mathrm{c}}\right)^{2} / \Sigma w \mid F_{\mathrm{o}}{ }^{2}\right]^{1 / 2}$.
 ${ }^{c}$ GOOF $=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\mid F_{\mathrm{c}}\right)^{2} /(n-p)\right]^{1 / 2}$.

[^2]: ${ }^{\text {a }}$ At $30^{\circ} \mathrm{C}, 2$ bar monomer pressure, 200 ml toluene, $[\mathrm{MAO}]=2 \mathrm{~g} \mathrm{l}^{-1},[\mathrm{Zr}]=1 \times 10^{-6} \mathrm{~mol} 1^{-1}$ (ethylene) and $5 \times 10^{-6} \mathrm{~mol} \mathrm{l}^{-1}$ (propylene), $t_{\mathrm{Pol}}=60 \mathrm{~min}$.
 ${ }^{\mathrm{b}}$ In $\mathrm{kg} \operatorname{Pol}(\mathrm{mol} \mathrm{Zr} \cdot \mathrm{h})^{-1}$.
 ${ }^{\mathrm{c}}$ n.d., not determined.
 ${ }^{\mathrm{d}} \mathrm{a}$, amorphous.

